In-Use NTE PM Measurement Methodology using an In-Line, Real-Time Exhaust PM Emissions Sensor

Marc C. Besch1, Arvind Thiruvengadam1, Hemanth Kappanna1, Alessandro Cozzolini1, Peter Bonsack1, Daniel K. Carder1, Juha Tikkanen2, Mridul Gautam1

Department of Mechanical and Aerospace Engineering
West Virginia University

1Pegasor Ltd, Tampere, Finland
Content

• Particle Sensor Technology
• NTE Measurement Methodology
• Experimental Setup
• Results and Discussion
 ➢ Engine Dynamometer Results
 ➢ Chassis Dynamometer Results
 ➢ (On-Road Testing Results)
• Conclusions
In-use Emissions Compliance Measurements/Testing:
- Quantification of PM mass emitted during Not-to-Exceed (NTE) events
- Establishing mass reference for aerosol in real-time

Other Fields of Application
- On-board Diagnostics Applications
- PM Sensor for Development and Implementation of DPF Regeneration Strategies
- Combustion Research and Engine Base Calibration Applications
Sensor - Description of Technology

- Measurement based on escaping current principle

Advantages:
- Real-time
- Continuous operation
- No PM sample collection
- No external dilution of exhaust needed

Operational Parameters:
- Sampling rate up to 100 Hz
- Sensor output can be calibrated to [mg/m³] or [#/m³]

Picture provided by Pegasor Oy
NTE In-use Measurement Method

Calculation of PM mass [mg] during NTE event:

\[
PM_{\text{Mass NTE}} = PM_{\text{Ratio PPS}} \cdot PM_{\text{Mass Total-Cycle}}
\]

\[
PM_{\text{Mass Total-Cycle}} = \text{TPM from gravimetric filter sample}
\]

\[
PM_{\text{Ratio PPS}} = \frac{\int_{t_{\text{Start Test}}}^{t_{\text{End Test}}} PPS(t) \cdot dt}{\int_{t_{\text{Start NTE}}}^{t_{\text{End NTE}}} PPS(t) \cdot dt}
\]
Experimental Setup

Engine Dynamometer:
- Full flow dilution tunnel (CVS-SSV)
- No aftertreatment system
- EEPS (TSI, Model 3090)
- CPC (TSI, Model 3025)
- MSS (AVL, Model 483)
- Intake Air Flow Measurement
- Proportional Flow TPM Sampling

Chassis Dynamometer:
- Full flow dilution tunnel (CVS-SSV)
- 6.6L Duramax - GMC4500 (2004)
- GVW ~ 12'000 pounds
- Diesel Oxidation Catalyst (DOC)
- Exhaust Flow Measurement
- Horiba OBS and Sensors SEMTECH
- Proportional Flow TPM Sampling

On-Road Testing:
- 6.6L Duramax - GMC4500 (2004)
- GVW ~ 12'500 pounds
- Diesel Oxidation Catalyst (DOC)
- Exhaust Flow Measurement
- Horiba OBS and Sensors SEMTECH
- Constant Flow TPM Sampling
Setup - Engine Test Cell/Chassis Dynamometer

\[C_{\text{CYS}} = C_{\text{Exh}} \cdot \frac{1}{DR_{\text{CYS}}} \]

\[\alpha_{\text{Loss}} = f \left(L, D, \dot{V}, \Delta T \right) \]

\[C_{\text{Filter}} = C_{\text{CYS}} \cdot \frac{1}{DR_{\text{Sec PM}}} \]

(Not applied to presented results)

\[DR_{\text{PPS}} = 0.0053 \cdot [\text{psi}] + 1.3082 \]

\[DR_{\text{CYS}} = \frac{\dot{m}_{\text{mix}}}{\dot{m}_{\text{Exh}}} \]

\[DR_{\text{Sec PM}} = \frac{\dot{V}_{\text{sf}}}{\dot{V}_{\text{sf}} - \dot{V}_{\text{sec}}} \]

Dilution System for EEPS and CPC:

1st Stage: Hot, ~ 130C DR = 6
2nd Stage: Cold, ~ 25C DR = 24
3rd Stage **: Cold, ~ 25C DR = 8
** Only for CPC

Intake Air (LFE) & Fuel Flow Measurement (Engine Test Cell)

Exhaust Flow Measurement, Annubar® (Chassis Dynamometer)

\[\dot{V}_{\text{intake}} \] & \[\dot{m}_{\text{fuel}} \]

\[\dot{V}_{\text{Exh}} \]
Setup - On-Road Testing

\[C_{Exh} = C_{PPS} \cdot DR_{PPS} \]

\[C_{Filter} = C_{CVS} \cdot \frac{1}{DR_{Sec\ PM}} \]

\[y = 0.0053x + 1.3082 \]

\[R^2 = 0.9688 \]

\[DR_{PPS} = 0.0053 \cdot [psi] + 1.3082 \]

\[DR_{Sec\ PM} = \frac{\dot{V}_{sf}}{\dot{V}_{sf} - \dot{V}_{sec}} \]

(Not applied to presented results)

\[\alpha_{Loss} = f(L, D, \dot{V}, \Delta T) \]
Results - Engine Test Cell

- **PPS Signal Filtering/Smoothing:**
 - Savitzky-Golay (Least-Squares Smoothing Filters)
 - *For Steady-State:*
 - Frame Size - 8.1 sec
 - Filter Order - 3
 - *For Transient Cycle:*
 - Frame Size - 2.1 sec
 - Filter Order - 5

- **Instrument Grounding at On-Road**

PPS Concentration as calculated at different locations in the measurement stream between PPS sample cell (blue line) and gravimetric filter face.
Results - Engine Test Cell (ESC)

• AVL MSS => Corrected for temperature influence and thermophoretic losses
• TPM includes absorbed SOF => PPS and AVL do not measure this fraction => Possible correction based on HC
Results - Chassis Dynamometer

Engine Speed [rpm]

From ECU

Engine Torque [ft-lb]

From ECU

NTE Zone [-]

From OBS

NTE Zones (t > 30sec)

PPS Signal [mV]
Conclusion and Outlook

• Response of PPS to PM emissions during the transient test cycle (FTP) was similar to that of EEPS (R^2 Value: 0.8969) and AVL MSS (R^2 Value: 0.8479).
• Development of NTE In-use Measurement Method using the PPS Signal to calculate PM during NTE events.
• Demonstration of this method based on engine dynamometer experiments => PPS-Method captures general trends.
 – Possible influence of high exhaust flow rates on sample extraction efficiency
 – Accounting for particle losses within transfer pipes
 – Influence of SOF on gravimetric filter weight
• Chassis Dynamometer and On-Road analysis is ongoing.
Thank You for Your Attention
Results - PPS vs. AVL MSS, Engine-out

- Engine: Mack MP-7 (MY 2004)
- No aftertreatment, engine-out measurement
- FTP-Cycle, Dynamometer

Linear Regression Coefficients:
(Least Squares Method)

\[
\text{PPS [mg/m}^3\text{]} = 0.1787 + 0.0581 \times \text{PPS [mV]}
\]

R-Square Value: 0.8479
Results - PPS vs. EEPS, Engine-out

- Engine: Mack MP-7 (MY 2004)
- No aftertreatment, engine-out measurement
- FTP-Cycle, Engine Dynamometer

Linear Regression Coefficients:
(Least Squares Method)

PPS [#/m^3] = 2.244E4 + 1.777E3 * PPS [mV]

R-Square Value: 0.8969
Sensor – Operational Parameters, cont’

- Low temperature version max 250 °C
- High temperature version max. 850 °C
- High concentration version 10 µg/m³-250 mg/m³
- High sensitivity version ~1µg/m³
- Sensor dimensions 20-40 mm diameter, 100-200 mm long – to be decided together with customers
- Electronics; 80x40x20 mm³
- Sensor output calibrated to mg/m³ or #-particles/cm³
- Sensor is installed outside the tailpipe with only inlet and outlet in the tailpipe
- Environmental conditions up to 85 degrees C, IP 45
Sensor - Description of Technology Cont’d

- RS485 Connector
- Sensor Electronics
- Dilution Air
- Sample Inlet
- Sample Outlet

Flow Rate [lpm]
Pressure [psi]

Dilution Ratio

$y = 0.0053x + 1.3082$
$R^2 = 0.9688$